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We study non-Newtonian fluid displacements in horizontal narrow eccentric annuli
in the situation where the inner cylinder is moving. This represents a practically
important extension of the model analysed by Carrasco-Teja et al. (J. Fluid Mech.,
vol. 605, 2008, pp. 293–327). When motion of the inner cylinder is included, the
Hele-Shaw model closure becomes significantly more complex and extremely costly
to compute, except for Newtonian fluids. In the first part of the paper we address the
model derivation and closure relations. The second part of the paper considers the
limit of large buoyancy number, in which the interface elongates along the annulus.
We derive a lubrication-style model for this situation, showing that the leading-order
interface is symmetric. Rotation of the inner cylinder only affects the length of the
leading-order interface, and this occurs only for non-Newtonian fluids via shear-
thinning effects. At first order, casing rotation manifests in an asymmetrical ‘shift’
of the interface in the direction of the rotation. We also derive conditions on the
eccentricity, fluid rheology and inner cylinder velocity, under which we are able to
find steady travelling wave displacement solutions.

1. Introduction
The aim of this paper is to understand the effects of slow casing motion on non-

Newtonian fluid displacements in horizontal narrow eccentric annuli. This may be
interpreted as a sequel to Carrasco-Teja et al. (2008), in which we have studied this type
of displacement flow, for the case in which the walls of the annulus are fixed. In this
situation we were able to find conditions on the dimensionless rheological parameters,
annulus eccentricity and (small) angle of inclination from horizontal, under which a
steady travelling wave displacement front could exist. Such displacements correspond
to a 100 % efficient displacement. In other situations the displacement is less efficient:
the interface is found to elongate progressively during the displacement. When the
displacement fluids have a yield stress, a more severe situation arises in which a
fluid may get stuck on the narrow side of the annulus (see McLean, Manry &
Whitaker 1966), in which case the displacement is never complete. The principal
motivation for the study of Carrasco-Teja et al. (2008) came from the industrial
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process of primary cementing, which involves displacement of non-Newtonian fluids
along narrow eccentric annuli. The process is described at length in Nelson & Guillot
(2006). See figure 1 below for a schematic of the process.

In the industrial process, the fluids are drilling muds, spacer fluids, washes and
cement slurries, which have a broad range of rheological properties. The annular
space is formed by the borehole wall and the outer wall of a steel casing that is
inserted into the newly drilled borehole. The casing slumps downwards under gravity,
so that the annuli are eccentric. This space is occupied by drilling fluid which must be
removed before the cement is placed, so as to ensure a good bond of the cement with
the annular walls and a tight hydraulic seal. Drilling fluids are usually non-Newtonian
and often possess a yield stress, which can lead to fluids getting stuck on the narrow
side of the annulus. In the past 20 years there has been a massive increase in the
number of horizontal wells constructed worldwide, primarily to increase productivity
by aligning the well with the reservoir. The early 1990s saw a continual pushing of
the horizontal extent of wells up to around 10 km (see e.g. the detailed description in
Payne, Wilton & Ramos 1995). The 10 km barrier was broken in a number of wells
drilled at Wytch Farm, UK, around 2000. The limits of ‘extreme’ extended reach wells
are now being pushed into the 15–20 km range, but such wells are unusual and do
not necessarily bring productivity benefits proportional to their technical challenges.
In the present day, it is routinely feasible to construct wells with horizontal extensions
in the 7–10 km range.

Although many of the potential problems of cementing horizontal wells were
identified some time ago (see e.g. Sabins 1990), the industrial response has been
largely through technological advances, rather than by developing understanding of
physical fundamentals that may affect the process. In longer horizontal wells it is
increasingly common to have laminar flows, both due to smaller annular gap sizes and
to the increased risk of high frictional pressures fracturing the surrounding formation
at high flow rates. In the absence of a density difference between fluids, displacements
in horizontal annuli are the same as in vertical annuli. However, drilling fluids are
typically 100–600 kg m−3 lighter than cement slurries, and a chemically compatible
spacer fluid designed to have intermediate density and rheological properties typically
separates these two fluids. This means that significant density differences are always
present in the cementing of horizontal wells.

In Carrasco-Teja et al. (2008) we answered a number of questions, of both fluid
mechanic interest and of practical industrial relevance. Which dimensionless groups
govern whether or not the flow will become stratified? With a density difference, is
it possible to have steady, travelling wave, displacement fronts? What are the effects
of an increased flow rate on a horizontal displacement? In this paper, which is still
motivated by primary cementing displacements, we consider motion of the inner
cylinder in the annulus. In the industrial setting it is becoming common to slowly
rotate and/or reciprocate the inner cylinder, which is called the ‘casing’. The precise
effects of casing movement is unknown, but the underlying reasoning is to forcibly
shear the drilling mud, so as to ease displacement on the narrow side of the annulus.
This objective is probably achieved: the walls of the annulus are fairly rough, so that
slip is unlikely, and therefore imposing relative motion must yield the fluid. What is
unknown however, are the wider effects of casing motion on these displacement flows.
Developing this understanding is the objective of our study.

The flows that we consider are laminar and the annuli considered have annular gaps
that are narrow with respect to both circumferential and axial length scales. Thus,
a Hele-Shaw modelling approach is appropriate and we adapt such an approach to
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the case of casing motion. The underlying idea of using a Hele-Shaw/porous media
approach to model these displacements dates back to Martin, Latil & Vetter (1978)
and Tehrani, Ferguson & Bittleston (1992), but was put in the present formulation by
Bittleston, Ferguson & Frigaard (2002). We first restrict the model of Bittleston et al.
(2002) to a uniform annular section of constant inclination, eccentricity and radii,
then incorporate both rotation and axial motion of the inner cylinder.

The principal difficulty in developing the Hele-Shaw approach in this direction is
computational. At their heart, Hele-Shaw (and related) methods rely on being able to
solve a reduced two-dimensional shear flow, in the plane of the flow, then averaging
the velocity across the narrow gap. The closure relation developed in this way relates
the gap-averaged velocity field to the modified pressure gradient (i.e. Darcy’s law
in the porous media context), and is used to eliminate either the pressure or the
stream function from the governing equations. In the absence of wall motion, this
closure relation can be expressed analytically, even for non-Newtonian fluids of the
types commonly used.

With a moving wall, the underlying shear flow is a two-dimensional planar
Poiseuille–Couette flow, for which the closure relations are only calculable analytically
in the case of Newtonian fluids. For Newtonian fluids therefore, development of a
displacement model with wall motion is quite straightforward, leading to an elliptic
linear two-dimensional partial differential equation for the stream function. Although
rheological aspects are missing, at least some characteristics of displacements with
casing motion can be understood by a Newtonian model, and this we have developed
in Carrasco-Teja & Frigaard (2009). For non-Newtonian fluids, we formulate the
underlying displacement model in this paper. However, to solve a fully two-
dimensional displacement flow problem for such fluids is not attempted. The field
equation for the stream function is still elliptic, but now is nonlinear, and to resolve
the nonlinearity at each point in space requires numerical solution of the underlying
local planar Poiseuille–Couette flow solution. Iteration is needed both for this local
closure and for the elliptic field equation. The computational task is thus formidable.

The results from Carrasco-Teja & Frigaard (2009), on Newtonian fluid
displacements are interesting. First of all, it has been possible to find steady-
state travelling wave solutions for concentric and mildly eccentric annuli, in the
presence of casing motion. These solutions are developed via a domain perturbation
method, that relies on the leading-order interface being almost perpendicular to the
direction of gravity. This occurs only when the buoyancy number of the flow is
small. The buoyancy number b̃ reflects the ratio of static pressure difference (over
the scale of the annular gap), to the principal viscous stresses. Although convenient
to have such analytical solutions, small buoyancy number is relatively unusual in
cementing. In Carrasco-Teja & Frigaard (2009) we have shown numerically that in
fact steady displacements also occur far away from the strict domain of validity of
the assumptions needed for analytical solution.

Casing rotation reduces the extension of the interface in the axial direction, and
also results in an azimuthal phase shift of the steady shape away from a symmetrical
profile. The phase shift results in the positioning of heavy fluid over light fluid along
segments of the interface. When the axial extension of the interface is sufficiently
large this leads to a local buoyancy driven fingering instability. A simple theory is
developed by Carrasco-Teja & Frigaard (2009) for this type of fingering. Over longer
times, the local fingering is replaced by steady propagation of a diffuse interfacial
region that may spread slowly due to dispersion. Slow axial motion of the annulus
walls on its own is apparently less interesting. There is no breaking of the symmetry
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of the interface and hence no instability. However, axial wall motion does generate
secondary flows which may combine with those from inner cylinder rotation resulting
in enhanced dispersive effects. The numerical regimes explored by Carrasco-Teja &
Frigaard (2009) are restricted to small and O(1) buoyancy number.

The large buoyancy number regime was studied Carrasco-Teja et al. (2008), but for
a stationary casing (annulus with fixed walls). At large |b̃|, buoyancy effects dominate
and the interface slumps under gravity as it advances. The slump distance scales with
|b̃| � 1, which prompted the development of a lubrication style displacement model
by Carrasco-Teja et al. (2008). This approach not only leads to analytical results
(discussed earlier) but also is sensible computationally in avoiding computing over
long-thin domains. Later, in the second part of this paper, we develop a similar
lubrication model approach, but now including motion of the inner cylinder.

Other than the work reviewed above, the model of Bittleston et al. (2002) has
been extensively studied in Pelipenko & Frigaard (2004a,b,c), for near vertical annuli.
As with horizontal displacements, the dynamics are dominated by the existence
(or not) of steady travelling wave solutions, i.e. for certain parameter values the
displacement front advects along the annulus at the mean pumping speed. Analytic
solutions to the displacement problem, exhibiting the steady travelling wave behaviour,
are constructed by Pelipenko & Frigaard (2004a) and investigated numerically by
Pelipenko & Frigaard (2004b). It is also possible to predict the domains of existence
of steady and unsteady displacements using a lubrication-style displacement model
(see Pelipenko & Frigaard 2004c). A time-dependent version of the Hele-Shaw part
of the model was developed in Moyers-González et al. (2007) and used to investigate
interfacial instabilities in Moyers-González & Frigaard (2008, 2009).

There are also a limited number of computational studies of annular displacement
flows which do not follow the Hele-Shaw approach. Szabo & Hassager (1995,
1997), have computed a three-dimensional immiscible displacement flow between two
Newtonian fluids using the arbitrary Lagrange–Euler formulation. The model shows
reasonable agreement with a film-draining model derived for concentric annular
displacements and also shows that the displacement efficiency drops significantly
with annular eccentricity. Three-dimensional approaches have also been taken by
other authors, using general purpose computational fluid dynamics (CFD) codes,
e.g. Jakobsen et al. (1991); Vefring et al. (1997); Dutra et al. (2004); Nguyen
et al. (2008). As with Szabo & Hassager (1995, 1997), such studies have value
in understanding details of the flow near the interface but are of limited use in
understanding flows on a larger scale, which is the advantage of the Hele-Shaw
approach. A hybrid two-dimensional/three-dimensional approach has recently been
adopted by Savery, Darbe & Chin (2007), in which the Navier–Stokes equations
are simplified by ignoring radial velocities and azimuthal pressure gradients, but the
model is still resolved in three dimensions. The authors are able to include casing
motion in this approach, but a justification of the assumptions and even details of
the final simplified model are not given in Savery et al. (2007).

An outline of our paper is as follows. In § 2 we present the Hele-Shaw model
including casing motion. Two formulations of the model are given: one based on a
concentration equation and one with a clean interface (more suitable for analytical
work). We also discuss the closure problem, in § 2.1.1 and later in more depth in
the Appendix. Displacements at large buoyancy number are considered in § 3. We
first use the Newtonian displacement model from Carrasco-Teja & Frigaard (2009)
to demonstrate that long interfaces, of length ∼O(|b̃|), also occur in the presence of
casing motion, i.e. as for the stationary casing situation in Carrasco-Teja et al. (2008).
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Figure 1. Schematic of the process geometry: (a) primary cementing of a horizontal well,
(b) narrow eccentric annulus, (c) annular cross-section, (d ) unwrapped annulus/periodic
Hele-Shaw cell.

We then derive a lubrication-style displacement model for the interfacial region of such
flows, which results in a quasi-linear advection–diffusion equation for the interface
position(s). We simplify the analysis using a perturbation procedure, which shows that
the leading-order interface position is symmetric, with a rotational asymmetric ‘shift’
occurring at first order. In § 4 we address the key question of whether or not steady
travelling wave solutions are possible. We provide conditions that are necessary and
sufficient for the lubrication model to have steady solutions, and explore solutions for
typical parameter ranges in Newtonian, power law and Bingham fluid models. The
paper closes with a brief discussion of the results in § 5.

2. Model outline
The model derivation that we adopt follows closely that in Bittleston et al.

(2002) (see also Pelipenko & Frigaard 2004a; Carrasco-Teja et al. 2008; Carrasco-
Teja & Frigaard 2009). We consider displacement flows in a nearly-horizontal narrow
eccentric annulus, in which the inner cylinder may slowly translate and/or rotate.
We use a coordinate system (y, φ, ξ ), as illustrated in figure 1: y measures radial
distance from the centreline of the annular gap, φ ∈ [−1, 1] denotes a scaled azimuthal
coordinate and ξ measures distance along the annulus. The geometry is described by
the eccentricity e, angle of inclination to the vertical β and annular gap width,

2H (φ) ≈ 2(1 + e cos πφ),

i.e. y ∈ [−H (φ), H (φ)]. The inner cylinder is rotating at a dimensionless speed vC , and
reciprocating with a velocity wC . The underlying model we shall derive is a Hele-Shaw
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style model, with now the added complication that the inner wall of the eccentric
annular Hele-Shaw cell is moving.

We adopt the convention of denoting all dimensional quantities with a ·̂ , and
dimensionless quantities without. Scaling and model reduction follows the steps in
Bittleston et al. (2002) and Carrasco-Teja et al. (2008). The narrowness of the annular
gap is measured using the aspect ratio: δ =(r̂o − r̂i)/[π(r̂o + r̂i)], where r̂o and r̂i are
inner and outer cylinder radii, respectively. A Reynolds number for the displacement
is defined as Re = [ρ̂∗ŵ∗(r̂o−r̂i)]/µ̂

∗, where µ̂∗ and ρ̂∗ are suitable density and viscosity
scales, and ŵ∗ is the mean axial velocity. As is usual for Hele-Shaw models, the basic
assumptions used in the derivation are that δ � 1 and δRe � 1. A summary of scaling
and dimensionless numbers may be found in § 2.3.

As before, we work with two formulations for the model: (i) a fluid concentration-
based formulation, which is effective for computational simulation; (ii) an interface
tracking formulation which is more convenient for analytical work. The fluid
concentration formulation is considered in the large-Péclet-number limit, in which
diffusion/dispersion is neglected, and the two models are formally equivalent.

2.1. Fluid concentration formulation

The velocity components in (y, φ, ξ ) directions are denoted (u, v, w), and to leading
order the mass-conservation equation is

∂u

∂y
+

∂v

∂φ
+

∂w

∂ξ
= 0. (2.1)

To eliminate the radial velocity, we average across the gap width, using conditions of
no-slip at the annulus walls to get

∂

∂φ
[Hv̄] +

∂

∂ξ
[Hw̄] = 0, (2.2)

where (v, w) are the averaged velocity components in the (φ, ξ ) directions, i.e.

v̄ =
1

2H

∫ H

−H

v dy, w̄ =
1

2H

∫ H

−H

w dy. (2.3)

The two key assumptions made in this modelling approach are (i) that the fluid
concentration c is uniform across the narrow annular gap; (ii) that diffusion/
dispersion may be neglected. The reader is referred to Bittleston et al. (2002) for
a discussion of these assumptions. Making these assumptions allows us to derive the
following leading-order equation for the gap-averaged fluid concentration c:

∂

∂t
[Hc] +

∂

∂φ
[Hv c] +

∂

∂ξ
[Hw c] = 0. (2.4)

Note that under the assumptions made, c = c, but for consistency with our previous
work we use the notation c. The fluids are modelled as Herschel–Bulkley fluids. The
dimensionless density, consistency, power law index and yield stress of pure fluid k

are denoted respectively by ρk , κk , nk and τk,Y , for k = 1, 2. In the concentration-based
formulation, fluid properties at intermediate concentrations are modelled via closure
expressions involving the above pure fluid properties and c, i.e. we write simply
ρ(c), κ(c), n(c) and τY (c) for these closures. For simple displacements (e.g. pure fluid 1
displaces pure fluid 2 at given flow rate with an initially ‘sharp’ interface), intermediate
concentrations only arise local to the interface, due to numerical diffusion/dispersion
effects. We have not found that the precise closure relationships used have a significant
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effect on such displacements and consequently have used only linear interpolation of
the fluid properties.

Only the gap-averaged velocity and concentration appear in (2.2) and (2.4), which
are valid in the two-dimensional domain (φ, ξ ) ∈ [−1, 1] × [0, L], where typically
L � 1. To provide closure of this system we derive the leading-order momentum
equations, using the typical scaling arguments of Hele-Shaw models. The pressure
does not vary across the annular gap and the reduced momentum equations in (φ, ξ )
directions are

∂τφy

∂y
= −Gφ, (2.5)

∂τξy

∂y
= −Gξ, (2.6)

where G = (Gφ, Gξ ) is the modified pressure gradient field, given by

G =

(
−pφ +

ρ sinβ sin πφ

St∗ , −pξ − ρ cos β

St∗

)
. (2.7)

Here St∗ is the Stokes number for the flow, which is defined below in § 2.3, where
we also summarize the scaling used and other dimensionless groups. The scaled
leading-order constitutive model is

τφy = η
∂v

∂y
⇐⇒ τ > τY , (2.8)

τξy = η
∂w

∂y
⇐⇒ τ > τY , (2.9)

γ̇ = 0 ⇐⇒ τ � τY , (2.10)

where τ = (τ 2
φy + τ 2

ξy)
1/2

, the leading-order rate of strain second invariant is

γ̇ =

(
∂v

∂y

2

+
∂w

∂y

2)1/2

,

and the effective viscosity is

η = κγ̇ n−1 +
τY

γ̇
. (2.11)

The remainder of the model derivation proceeds along standard lines. Firstly, we
define the gap-averaged velocity in terms of a stream function Ψ :

2Hw̄ =
∂Ψ

∂φ
, 2Hv̄ = −∂Ψ

∂ξ
. (2.12)

Secondly, we derive the closure relationship between G and the gap-averaged velocity
u = (v, w) (or equivalently ∇Ψ ). Thirdly, we cross differentiate G to eliminate the
pressure, which leads to an elliptic problem for the stream function Ψ :

∇ · S = −∇ · f (2.13)

where S =(Gξ, −Gφ) and where the buoyancy terms manifest in the term

f = ρ(c)
(

cos β

St∗ ,
sinβ sin πφ

St∗

)
. (2.14)
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Boundary conditions for (2.13) are

Ψ (φ + 2, ξ ) = Ψ (φ, ξ ) + 4, (2.15)

∂Ψ

∂ξ
= −HvC, at ξ = 0, L. (2.16)

The first of these ensures that the mean axial velocity is equal to 1, which follows
from our choice of scaling. The second ensures that in the far field, away from the
interface, the azimuthal flow is given by the Couette component due to the moving
casing.

2.1.1. Remarks on the formulation and closure relations

As is usual in this kind of two-dimensional model, there is the option of eliminating
either the pressure from the system and working with the stream function or vice
versa. When the casing is moving, the fluids are sheared and the mapping from G
to u is one to one. Thus either formulation could be used. However, for a stationary
casing, the mapping from u to G is not uniquely defined at u =0 for yield stress
fluids. Physically, a finite range of modified pressure gradients G fail to mobilize a
yield stress fluid, i.e. whenever |G| � τY /H we have u = 0. This has led, in Bittleston
et al. (2002) and our other work, to the adoption of the stream function formulation.
For consistency of approach we retain the stream function formulation here for the
moving casing.

The main difference between this and the stationary casing models that we have
worked with before is in the closure relation, between G and u, or equivalently
between ∇Ψ and S. This closure is derived by solving the simplified momentum
equations, (2.5) and (2.6), at each (φ, ξ ), subject to boundary conditions:

(v, w) = (vC, wC) at y = −H (φ), (v, w) = (0, 0) at y = H (φ).

For a Newtonian fluid we derive straightforwardly the linear relations:

G =
3κ

H 2

(
u − 1

2
(vC, wC)

)
, (2.17)

S =
3κ

2H 3
(∇Ψ − H (wC, −vC)) , (2.18)

separating Poiseuille and Couette effects.
For the non-Newtonian fluids that we consider there is no fully analytical solution

available if the casing velocity is non-zero. For stationary casing, there is an implicit
relationship between ∇Ψ and S, that is derived in Bittleston et al. (2002). For a moving
casing, the closure may be computed reasonably quickly and it is also possible to
derive certain qualitative results. These results are derived fully in the Appendix, but
here we mention just three results that are useful later.

(a) For fixed (vC, wC), the constant vector G uniquely defines u (or equivalently S
uniquely defines ∇Ψ ).

(b) If ∇Ψ1 is defined by S1 and ∇Ψ2 is defined by S2, the following monotonicity
result holds:

[∇Ψ1 − ∇Ψ2] · [S1 − S2] � 0. (2.19)

(c) Defining the j th moment of the mobility, mj by

mj =

∫ H

−H

( y

H

)j 1

η
dy. (2.20)
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The following relationships are satisfied:

u =
1

2
(vC, wC)

(
1 +

m1

m0

)
+ H 2

(
m2 − m2

1

m0

)
G, (2.21)

∇Ψ = H (wC, −vC)

(
1 +

m1

m0

)
+ 2H 3

(
m2 − m2

1

m0

)
S. (2.22)

The first of these results, (a), ensures that we have a closure to compute. The second
of these, (b), can be exploited to ensure uniqueness of the stream function solution
to (2.13). It also allows us to compute the closure in different ways. In fact, provided
that (vC, wC) is non-zero the fluid is sheared and the inequality in (2.19) is strict
(as can be verified numerically). This means that, for example, we may do any of
(i) specify ∇Ψ and compute S; (ii) specify S and compute ∇Ψ ; (iii) specify both Ψφ

and Sξ , and compute Ψξ and Sφ; (iv) specify both Ψξ and Sφ , and compute Ψφ and
Sξ . This allows for considerable flexibility that we shall later exploit.

The third of the properties given above, (c), shows that, although the mobility
moments mj do need to be computed numerically, there is a well-defined splitting
into Couette and Poiseuille components directly analogous to (2.17) and (2.18). Note
that in the case of a Newtonian fluid, m1 = 0, m2 = 1/(3κ), and (2.17) and (2.18) are
recovered. In the case of a pure Couette flow the stress is constant across the annular
gap and hence m1 = 0. Finally, it is worth noting that the expression (m2 −m2

1/m0) > 0,
from the Cauchy–Schwarz inequality, except in the degenerate case where mj =0, ∀j ,
which corresponds to the fluid being unyielded throughout the channel and is not
possible for non-zero (vC, wC).

2.2. Interface tracking formulation

In this formulation the domain is divided into two fluid domains: Ω1 for the displacing
fluid 1, and Ω2 for the displaced fluid 2, in each of which (2.13) is replaced by

∇ · S1 = 0, (φ, ξ ) ∈ Ω1, (2.23)

∇ · S2 = 0, (φ, ξ ) ∈ Ω2, (2.24)

with Sk defined exactly as S is defined for the concentration dependent formulation,
but with properties ρ1, τ1,Y , κ1, n1 in fluid 1 and ρ2, τ2,Y , κ2, n2 in fluid 2. Note
that for constant density ρk , we have that ∇ · f k =0, hence the right-hand side of
(2.23) and (2.24). If the interface is denoted by φ =φi(ξ, t), this satisfies the kinematic
condition

∂φi

∂t
+ w̄

∂φi

∂ξ
= v̄, (2.25)

which essentially replaces the concentration advection equation. The leading-order
continuity conditions at the interface are that the stream function Ψ and the pressure
p are continuous across the interface. Assuming sufficient regularity of the interface,
the former condition assures that the normal velocity, the derivative of Ψ along the
interface, is well defined at the interface. Pressure continuity is expressed in terms of
defining the jump in Sk across the interface:[(

Sk,ξ

∂φi

∂ξ
− Sk,φ

)
+

(
ρk sin β sin πφ

St∗
∂φi

∂ξ
− ρk cos β

St∗

)]2

1

= 0. (2.26)

Effectively this is [(Sk + f k) · n]21 = 0.
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2.3. Summary of scaling and dimensionless numbers

All parameters and variables used above are dimensionless, and our results will be
presented in terms of dimensionless quantities. Our dimensionless model contains the
following 13 dimensionless parameters.

(i) Eccentricity: e ∈ [0, 1), which is defined in figure 1(c).
(ii) Angle of inclination: β , as illustrated in figure 1(b).
(iii) Azimuthal casing speed: vC =0.5π(r̂o+r̂i)Ω̂C/ŵ∗, where r̂o and r̂i are the outer

and inner radii of the annulus, Ω̂C is the angular velocity of the inner cylinder and ŵ∗

is the mean velocity, defined in terms of the imposed flow rate Q̂ by Q̂ = π(r̂2
o − r̂2

i )ŵ
∗.

Note that typically |vC | < 1.
(iv) Axial casing speed: wC = ŵC/ŵ∗, and typically |wC | < 1.
(v) Fluid j power-law index: nj . Typically the fluids are shear thinning, so nj � 1.

(vi) Fluid j yield stress: τj,Y = τ̂j,Y /τ̂ ∗, where τ̂ ∗ = maxk=1,2{τ̂k,Y + κ̂k[ ˆ̇γ ∗]nk }, is a

viscous stress scale defined using ˆ̇γ ∗ = 2ŵ∗/(r̂o − r̂i), as a representative strain rate.
Note that by definition, τj,Y � 1.

(vii) Fluid j consistency: κj = κ̂j [ ˆ̇γ ∗]nk /τ̂ ∗}. Note that by definition, κj � 1.
(viii) Fluid j density: ρj = ρ̂j / maxk =1,2{ρ̂k}, so that one of the densities is = 1 and

the other is � 1, representing the density ratio. Here ρ̂j is the dimensional density of
fluid j .

(ix) Stokes number: St∗ = [2τ̂ ∗]/[maxk=1,2{ρ̂k}ĝ(r̂o − r̂i)], where ĝ is the
gravitational acceleration.

This is a formidable set of parameters, but there are some restrictions in range, as
indicated. Firstly, we shall consider inclinations that are close to β = π/2. Secondly,
we shall always consider that the heavier fluid displaces the lighter fluid, i.e. ρ1 = 1,
ρ2 < 1. Thirdly, if we consider only the pure fluid properties and assume that the
phases are advected without any diffusion/dispersion, the fluid density only enters
the picture via buoyancy and always combines with the Stokes number. The effects
of buoyancy are characterized by the dimensionless parameter, b̃ = (ρ2 − ρ1)/St∗:

b̃ =
ρ2 − ρ1

St∗ =
(ρ̂2 − ρ̂1)ĝ(r̂o − r̂i)

2τ̂ ∗ , (2.27)

clearly representing the ratio of buoyant to viscous forces. Note that since the
displacing fluid is assumed heavier here, b̃ < 0. In Carrasco-Teja & Frigaard (2009)
we have considered |b̃| = O(1), mostly numerically, and for Newtonian fluids only.
Here we shall explicitly consider the limit of |b̃| � 1, in which we also allow
deviations from a horizontal annulus, with angles |β −π/2| ∼ O(1/|b̃|). Thus, the main
dimensionless parameters governing this limit are the eccentricity e, the dimensionless
casing speeds, vC and wC and the six rheological parameters (all bounded above
by 1).

The dimensionless casing speeds are of O(1) partly for practical reasons. The casing
is moved primarily in order to ensure that any gel in the drilling mud is broken.
Large values of wC mean a rapid reciprocation which is impractical over length
scales of hundreds of metres driven mechanically from the surface. Note that a value
wC > 2 would mean that the Couette component of velocity (driven by pulling the
casing) is faster than the mean pumping velocity, which is very unlikely. Similarly,
we should note that large rotation rates may result in shearing of the casing and/or
some component of the drive mechanism, both of which are difficult and expensive
to remedy downhole. From the mathematical perspective, in deriving the Hele-Shaw
model we would require that the casing speeds are of the same order as the mean
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flow velocity. In this paper we assume that the casing speeds are constant, but this
is not strictly necessary. Suitably slow variations in time would not affect the model
derivation (and as the well is finite in length the axial speed must vary in time, i.e.
the casing is reciprocated).

To recover dimensional quantities from the reduced model, the axial and azimuthal
velocities have been scaled with the mean flow velocity ŵ∗ axial and azimuthal lengths
with the half-circumference, 0.5π(r̂o + r̂i), and time with 0.5π(r̂o + r̂i)/ŵ

∗.
The principal assumptions made in the derivation are those standard for Hele-

Shaw approaches, i.e. δ � 1 and δRe � 1 (see earlier for the definitions). These are
the main physical limitations, to ensure that inertia and other stress components are
absent. Additionally, we have assumed that concentration variations across the gap
are minimal. Otherwise we would need to model diffusive and dispersive effects with
the concentration.

3. Displacements at high buoyancy numbers
The model described in the previous section is derived for laminar displacement

flows in horizontal annuli with arbitrary casing motion and rheological parameters.
As discussed in § 2.1.1 the main complexity of the model comes in the closure between
∇Ψ and S. This complexity arises due to casing motion, which imposes a Couette
component and means that the modified pressure gradient is no longer parallel to the
gap-averaged velocity field. In Carrasco-Teja & Frigaard (2009) the Newtonian version
has been solved computationally, which simply consists of a linear elliptic equation
for the stream function, coupled to (2.4) for the concentration. For non-Newtonian
fluids we could adapt the Augmented Lagrangian approach used in Pelipenko &
Frigaard (2004b); Carrasco-Teja et al. (2008), but having to evaluate the underlying
model closures numerically makes this task extremely slow numerically. Therefore,
we instead consider a limiting set of flows that allows further model simplification,
i.e. the limit |b̃| � 1.

3.1. Example Newtonian simulations for |b̃| � 1

In fixed casing flows at large |b̃|, Carrasco-Teja et al. (2008) have observed that the
displacement front typically elongates along the annulus for a distance of O(|b̃|). The
elongated front may either propagate as a steady travelling wave, moving at the mean
displacement velocity, or may spread further if the rheological parameters do not
allow for a stable steady travelling wave solution. We explore whether this situation
also occurs in the presence of casing motion, using the model and computational
method detailed in Carrasco-Teja & Frigaard (2009), for Newtonian fluid
displacements.

Figure 2 presents results from Newtonian computations with a 4:1 viscosity ratio
and small eccentricity at b̃ = −50. Three simulations are presented at increasing casing
rotation rates, with no axial casing velocity. The parameters are chosen so that at
vC =0 there exists a steady travelling wave solution, according to the conditions
developed in Carrasco-Teja et al. (2008), and this is confirmed numerically. We
observe that for modest increases in vC there is also a steady solution.

Two interesting observations can be made from figure 2. Firstly, it appears that
the axial length of the interface does not change with the rotation rate. This is in
contrast to many of the simulation results presented in Carrasco-Teja & Frigaard
(2009), where buoyancy was not dominant, i.e. |b̃| ∼ O(1). Secondly, we observe that
the orientation of the streamlines changes. In each simulation, the interfacial region



148 M. Carrasco-Teja and I. A. Frigaard

ξ

−5

0

5

28 33 38 43

28 33 38 43

28 33 38 43

−1

0

1
t = 35

φ

φ

φ

−4

−4

−2

−2

0

0

2

2

4

4

(a)

−1

0

1
(b)

−1

0

1
(c)

Figure 2. Streamlines and interface (c̄(φ, ξ ) = 0.5) at t = 35 from the two-dimensional numer-
ical simulation: (a) vC = 0.1; (b) vC = 0.3; (c) vC = 0.5. Other model parameters are κ1 = 1,

κ2 = 0.25, e =0.1, wC = 0, b̃ = −50 (ρ1 = 1, ρ2 = 0.9, St∗ = 0.002).

appears to be characterized by streamlines that are near-parallel to the annulus axis,
but just outside this region the streamlines quickly become more angular. The angular
behaviour is easily understood as it is simply associated with the Couette component
from the rotation. We observe that the angle the streamlines make with the ξ -axis
increases as the rotation rate is increased.

In figure 3 we present a second set of simulation results. This time we have a
1:4 viscosity ratio, small eccentricity again and have reduced |b̃| slightly. For these
parameters the fixed casing simulation is unsteady, as is captured in figure 3(a).
We observe that the interface elongates progressively along the narrow side of the
annulus, under the action of buoyancy. As the casing rotation rate is increased from
zero, the displacement remains unsteady. In Carrasco-Teja & Frigaard (2009), for
more modest |b̃| we observed that O(1) casing rotation could in fact stabilize an
otherwise unsteady displacement, but for |b̃| � 1 this does not appear to occur. We
also observe in figure 3(d–f ) the same streamline behaviour as in figure 2.

3.2. Derivation of the lubrication displacement model

As we have seen, under conditions of dominant buoyancy and with modest casing
motions, it is possible to have stable steady displacements with interfaces that become
long. Assume that δ � 1, δ(r̂o + r̂i/2) � 1 and c ∼ c. We consider the case |b̃| � 1 and
define ε =1/|b̃| � 1. As in Carrasco-Teja et al. (2008) we adopt the interface tracking
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Figure 3. Examples of an unsteady displacement. (a–c) Interface (c̄(φ, ξ ) = 0.5) shown at
t =1, 2, 3 . . . 15. (d–f ) Streamlines and interface shown at t =20: (a and d ) vC = 0; (b and e)
vC = 0.1; (c and f ) vC = 0.3. Other model parameters are κ1 = 0.25, κ2 = 1, e = 0.1,

wC = 0, b̃ = −10 (ρ1 = 1, ρ2 = 0.9, St∗ = 0.01).

formulation described in § 2.2. For simplicity we shall assume throughout that the
displacing fluid 1 is heavier than the displaced fluid 2, and that the displacement front
slumps towards the bottom of the annulus, φ = ±1. We also assume as in Carrasco-
Teja et al. (2008) that the annulus is close to horizontal in the sense that cos β = αε

with α = O(1).
The main complication introduced by the casing rotation is that the closure relation

between Sk and ∇Ψ in each fluid is not easily specified for non-zero (vC, wC). Thus,
the way to reduce the equations further is not immediately apparent. One might
consider working with either Sk or ∇Ψ . Our choice of variable is dictated by the
example results of figures 2 and 3, which have shown that long-thin interfaces are
characterized by near-parallel streamlines within the interfacial region (but not outside
in the single-phase regions). Thus, we assume the following scaling

(i)

∣∣∣∣∂Ψ

∂ξ

∣∣∣∣ = O(ε), (ii)

∣∣∣∣∂Ψ

∂φ

∣∣∣∣ = O(1), (iii)

∣∣∣∣∂φi

∂ξ

∣∣∣∣ = O(ε). (3.1)

From (2.22) we observe that (i) of (3.1) implies |Sk,ξ | = O(vC) + O(ε), and (ii) of (3.1)
implies |Sk,φ | = O(wC) + O(1).
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Figure 4. Schematic of the asymmetric interface.

We rescale axial distances and time as follows: z = εξ , t̃ = εt , w̄ =W , v̄ = εV . The
interface position is now φ =φi(z, t̃) and the kinematic equation:

2H
∂φi

∂t̃
+

∂Ψ

∂φ

∂φi

∂z
+

∂Ψ

∂z
= 0, (3.2)

where 2HV = −Ψz, 2HW = Ψφ .
The scales on S may be used to derive the pressure scaling:

− pξ − ρk cos β

St∗ = −εpz − α
ρk

|ρ2 − ρ1| = Sk,φ = O(wC) + O(1).

This suggests that we introduce P = εp as a rescaled pressure, i.e.

Sk,φ = −Pz − α
ρk

|ρ2 − ρ1| .

Using (2.22) and the scaling of Sk,ξ we have

1

ε

[
Pφ − ρk

|ρ2 − ρ1| sin πφ + O(ε2)

]
= pφ − ρ sinβ sin πφ

St∗ ,

= Sk,ξ = vC

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
k

+ O(ε). (3.3)

We suppose that the interface has slumped towards the narrow side of the annulus,
φ = ±1, due to buoyancy effects (see figure 4). At any fixed z, as we increase φ ∈ [−1, 1]
we will cross the interface exactly twice (thus our use of φ =φi(z, t̃) is not precise,
as the function is double valued). We shall denote the two crossing positions by φ−

i

and φ+
i , with ∂φ−

i /∂z > 0, ∂φ+
i /∂z < 0, and assume the narrow side is occupied by the

heavier fluid 1. If instead the narrow side is occupied by light fluid, similar expressions
hold.

We integrate (3.3) with respect to φ at fixed z, within the interfacial zone, giving
the following expressions, valid to O(ε2):

P (φ, z, t) =P (−1, z, t) − ρ1

π|ρ2 − ρ1| [cos πφ + 1] + εvC

∫ φ

−1

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ,

φ ∈ [−1, φ−
i ], (3.4)
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P (φ, z, t) =P (−1, z, t) − ρ1

π|ρ2 − ρ1| − cos πφ−
i

π
− ρ2

π|ρ2 − ρ1| cos πφ

+ εvC

∫ φ−
i

−1

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ + εvC

∫ φ

φ−
i

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
2

dφ,

φ ∈ [φ−
i , φ+

i ], (3.5)

P (φ, z, t) =P (−1, z, t) − ρ1

π|ρ2 − ρ1| [cos πφ + 1] +
cos πφ+

i − cos πφ−
i

π

+ εvC

∫ φ−
i

−1

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ + εvC

∫ φ+
i

φ−
i

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
2

dφ

+ εvC

∫ φ

φ+
i

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ, φ ∈ [φ+
i , 1]. (3.6)

We now impose periodicity of the pressure, i.e. P (−1, z, t) = P (1, z, t), which leads
directly to the condition:

0 =
cos πφ+

i − cos πφ−
i

π
+ εvC

∫ φ−
i

−1

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ

+ εvC

∫ φ+
i

φ−
i

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
2

dφ + εvC

∫ 1

φ+
i

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ. (3.7)

Only the first term above is of order 1, and thus we have the leading-order condition
that cos πφ+

i = cos πφ−
i which implies that φ−

i = −φ+
i . This has the important

conclusion that at leading order the interface will be symmetric about wide and
narrow sides of the annulus. We may readily see that in the above expression the
effect of casing rotation comes in at first order on the ‘symmetry’ of the interface.
This is not to say that casing rotation cannot affect the shape of the interface at
leading order.

3.2.1. Perturbation expansion

Having determined the orders of magnitude of the various terms and some basic
properties of the solution above, we now proceed in a formal perturbation expansion:

Ψ ∼Ψ0 + εΨ1 + ε2Ψ2 + . . . ,

P ∼P0 + εP1 + ε2P2 + . . . ,

Sk ∼Sk,0 + εSk,1 + ε2Sk,2 + . . . ,

φ
±
i ∼φ

±
i,0 + εφ

±
i,1 + ε2φ

±
i,2 + . . . .

Above we have established that φ−
i,0 = −φ+

i,0, and we shall simply write φ+
i,0 = φi for

the leading-order symmetric interface. The leading-order pressure is given by the even
function P0(−φ, z, t) =P0(φ, z, t):

P0(φ, z, t) =

⎧⎪⎪⎨
⎪⎪⎩

P (1, z, t) − ρ1(1 + cos πφ)

π|ρ2 − ρ1| +
cos πφ − cos πφi

π
, φ ∈ [0, φi],

P (1, z, t) − ρ1(1 + cos πφ)

π|ρ2 − ρ1| , φ ∈ [φi, 1].

(3.8)
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The equations governing Sk are (2.23) and (2.24), which to leading order give

∂Sk,0,φ

∂φ
=0, (3.9)

∂Sk,1,φ

∂φ
= − ∂Sk,0,z

∂z
. (3.10)

Thus, Sk,0,φ is independent of φ in each layer and using the leading-order pressure:

S1,φ = −Pz(1, z, t) − α
ρ1

|ρ2 − ρ1| , (3.11)

S2,φ = −Pz(1, z, t) − α
ρ2

|ρ2 − ρ1| − sin πφi

∂φi

∂z
,

S2,φ = S1,φ + α − sin πφi

∂φi

∂z
. (3.12)

To proceed further we need to fix the closure relation between Sk and ∇Ψ . As
discussed in § 2.1.1 and described in detail in the Appendix, the closure relations may
be formulated and computed in many different ways. For the lubrication model, the
most convenient is to specify both Ψξ and Sφ , and compute Ψφ and Sξ . Therefore, we
assume the following relationships hold:

Ψφ = Fk,1(Sk,φ, Ψξ ), (3.13)

Sk,ξ = Fk,2(Sk,φ, Ψξ ), (3.14)

where Fk,1 and Fk,2 are sufficiently smooth for what follows. Note that Ψξ ∼ εΨ0,z +
O(ε2), and thus via a Taylor expansion we have

Ψ0,φ = Fk,1(Sk,0,φ, 0), (3.15)

Sk,0,z = Fk,2(Sk,0,φ, 0), (3.16)

Ψ1,φ = Sk,1,φ

∂Fk,1

∂Sk,φ

(Sk,0,φ, 0) + Ψ0,z

∂Fk,1

∂Ψξ

(Sk,0,φ, 0). (3.17)

As in Pelipenko & Frigaard (2004c) and Carrasco-Teja et al. (2008), the leading-
order stream function and pressure gradient are now determined via consideration of
the global mass conservation, i.e. the periodic boundary condition on Ψ

4 = Ψ (1, z, t̃) − Ψ (−1, z, t̃) =

∫ 1

−1

Ψφ dφ. (3.18)

On expanding (3.18) with respect to ε, and exploiting the symmetry of the leading-
order interface, the zeroth-order expression is

2 =

∫ 1

0

Ψ0,φ dφ =

∫ φi

0

F2,1(S2,0,φ, 0) dφ +

∫ 1

φi

F1,1(S1,0,φ, 0) dφ,

=

∫ φi

0

F2,1(A, 0) dφ +

∫ 1

φi

F1,1(A − b, 0) dφ, (3.19)

b = α − sin πφi

∂φi

∂z
, A = S2,0,φ. (3.20)

We note that the functions Fk,1(Sk,φ, Ψξ ) increase strictly monotonically with respect
to the first argument and thus A is uniquely determined at each z. Furthermore, we
may observe that the dependency on (z, t̃) enters only via φi and ∂φi/∂z.
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For a given symmetric leading-order interface, φi(z, t̃), let us assume that we have
computed A(z, t̃) from (3.19) at each z. Thus, we have Sk,0,φ determined in each fluid
and also Ψ0, via integration, e.g.

Ψ0 =

∫ φ

0

F2,1(S2,0,φ, 0) dφ, φ ∈ [0, φi].

Therefore Ψ0 = Ψ0(φ, φi(z, t̃), ∂φi/∂z(z, t̃)). From symmetry considerations, we may
infer that Ψ0 is an odd function of φ. Using (3.16) we may also compute Sk,0,z.

Defining Φi(φi) =
∫ φi

0
H dφ, as the volumetric position of the leading-order interface,

the leading-order kinematic equation is

∂Φi

∂t̃
+

∂q

∂z

(
Φi, Φi,z

)
= 0, (3.21)

where

q
(
Φi(z, t̃), Φi,z(z, t̃)

)
=

1

2
Ψ0

(
φ = φi(z, t̃), φi(z, t̃),

∂φi

∂z
(z, t̃)

)
.

This completes the leading-order solution.

3.2.2. First-order perturbation

To understand the asymmetry induced by casing rotation, we need to consider the
first-order perturbation. To start with, we may consider the first-order terms in (3.18),
which are found to be

0 = φ−
i,1

[
Ψ0,φ

(
φ−,−

i,0

)
− Ψ0,φ

(
φ−,+

i,0

)]
− φ+

i,1

[
Ψ0,φ

(
φ+,+

i,0

)
− Ψ0,φ

(
φ−,−

i,0

)]
+

∫ φ−
i,0

−1

Ψ1,φ dφ +

∫ φ+
i,0

φ−
i,0

Ψ1,φ dφ +

∫ 1

φ+
i,0

Ψ1,φ dφ, (3.22)

where φ−,−
i,0 is the limit as φ−

i,0 approached from below, etc. Using the fact that Ψ0,φ is
an even function and substituting from (3.17) we have

0 =
[
φ−

i,1 − φ+
i,1

][
Ψ0,φ

(
φ+,+

i,0

)
− Ψ0,φ

(
φ−,−

i,0

)]
+

∫ φ−
i,0

−1

S1,1,φ

∂F1,1

∂S1,φ

(S1,0,φ, 0) + Ψ0,z

∂F1,1

∂Ψξ

(S1,0,φ, 0) dφ

+

∫ φ+
i,0

φ−
i,0

S2,1,φ

∂F2,1

∂S2,φ

(S2,0,φ, 0) + Ψ0,z

∂F2,1

∂Ψξ

(S2,0,φ, 0) dφ

+

∫ 1

φ+
i,0

S1,1,φ

∂F1,1

∂S1,φ

(S1,0,φ, 0) + Ψ0,z

∂F1,1

∂Ψξ

(S1,0,φ, 0) dφ. (3.23)

We may observe that Sk,0,φ is an even function of φ and the partial derivatives of Fk,1

featured above are also even. From (3.10) we see that Sk,1,φ is an odd function of φ

and equally we have that Ψ0,z is an odd function of φ. Combining this we find that
all the integrals above vanish, leaving us with[

φ+
i,1 − φ−

i,1

][
Ψ0,φ

(
φ+,+

i,0

)
− Ψ0,φ

(
φ−,−

i,0

)]
= 0. (3.24)

Note that [Ψ0,φ(φ
+,+
i,0 )−Ψ0,φ(φ

−,−
i,0 )] is proportional to the jump in tangential velocities

across the interface, which will in general be non-zero due to different fluid rheological
properties. Therefore, we have that

φ+
i,1 = φ−

i,1. (3.25)
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Thus, the first-order perturbation of the interface gives the asymmetry due to rotation.
To quantify the degree of asymmetry, we enforce the condition of periodicity of the
pressure with respect to φ, i.e. we expand (3.7) to first order in ε, using (3.25) and the
fact that the mobility moments mj and leading-order interface are even:

φ+
i,1 sin πφi =vC

[∫ φi

0

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
2

dφ +

∫ 1

φi

1

2H 2

[
m1 + m0

m0m2 − m2
1

]
1

dφ

]
. (3.26)

Since the integrand is positive definite, we see that the symmetric interface is perturbed
by O(ε) in the direction of vC , as above.

Note that typically we would not compute the moments mj as part of the solution
procedure, so the above is given for qualitative understanding. In developing the
zeroth-order solution, we will have evaluated the leading-order Sk,0,z from (3.16). This
can be used to compute φ+

i,1 = φ−
i,1:

φ+
i,1 sin πφi =

∫ φi

0

S2,0,z dφ +

∫ 1

φi

S1,0,z dφ. (3.27)

Although we may proceed further to construct the first-order stream function
perturbation and remainder of the first-order solution, our principal interest lies
with behaviour of the leading-order interface and prediction of the asymmetry above.

3.3. Computational verification and comments

Figure 5 shows two comparisons between numerical solutions of the full two-
dimensional problem, for Newtonian fluids, and the lubrication model. We have
presented both the leading-order symmetric profile and the first-order asymmetric
correction superimposed. The agreement is evidently good, and the asymmetric shift
is verified to be small, i.e. O(1/|b̃|), as expected.

An interesting feature of the flows we have modelled is the transition from the
interfacial regime to the pure fluid regimes away from the interface. In the pure fluid
regimes, the stream function adopts a solution in which Sξ =0, so that the azimuthal
velocity matches the Couette shear component. It can be verified that in a pure fluid,
∇ · f =0, so that the field equations for the stream function are satisfied when Sφ is
independent of φ; Sφ is found iteratively by increasing Sφ until (3.18) is satisfied. It is
interesting to note that, for example, if the two fluids were both Newtonian or were
both power law, but with the same power law index, then the stream function far
upstream and downstream of the interfacial would be identical to within a constant!
Nevertheless, the streamlines are distorted in the interfacial region.

We should observe that some kind of matching region is necessary between the
interfacial and far-field regions. In terms of our perturbation method, there is a
transition layer between Ψξ ∼ ε in the interfacial region to Sξ ∼ ε in the pure fluid
regions. The classical lubrication assumptions on the interface being long and thin,
i.e. (iii) of (3.1), break down in the vicinity of the leading and trailing edge. For
example, the expression (3.27) for the azimuthal shift in interface position becomes
apparently singular at φi = 0, 1. This is a characteristic of the breakdown of a regular
perturbation procedure. We have not looked at the matching problem, although it is
probably tractable. The same type of breakdown of the modelling assumptions occurs
in most lubrication-style displacement (or thin film spreading) models.

Finally, note that since the first-order asymmetric shift is dependent only on the
zeroth-order solution, via (3.27), one could use the lubrication model as a relatively
quick simulation model for the full process, i.e. solving (3.21). The leading-order
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Figure 5. Comparison between the two-dimensional numerical solution (interface is the
contour c̄(φ, ξ ) = 0.5, in black), and the lubrication displacement model interface (leading-order
symmetric solution in solid white; first-order asymmetric shift – white dots): (a)
vC = 0.1; (b) vC = 0.5. Other model parameters are κ1 = 1, κ2 = 0.25, e = 0.1, wC =0, b̃ = −50
(ρ1 = 1, ρ2 = 0.9, St∗ = 0.002).

model is symmetric and it can be verified that (3.21) approaches the fixed casing limit
(see (4.13) in Carrasco-Teja et al. 2008), as the casing speeds approach zero. Also the
first-order asymmetry vanishes, since Sk,0,z → 0 as vC → 0. We have not followed this
computational route, but instead below we analyse (3.21) directly in order to ascertain
if there exist steady travelling wave solutions.

4. Steady travelling wave solutions
As in Carrasco-Teja et al. (2008) the key feature that we wish to predict is whether

or not steady travelling wave solutions exist, and to characterize the effects of casing
motion. In computing the flux function, note that formally we have:

q
(
Φi(z, t̃), Φi,z(z, t̃)

)
= q

(
Φi(z, t̃), b

)
: b = α − sin πφi

∂φi

∂z
, Φi(φi) =

∫ φi

0

H dφ,

and note that the only difference in leading-order model between here and Carrasco-
Teja et al. (2008) is in the detail of computing the closures. In particular we find that
q increases monotonically with respect to b, and consequently (3.21) can be written
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as:

∂Φi

∂t̃
+

∂q

∂Φi

(Φi, b)
∂Φi

∂z
=

∂q

∂b
(Φi, b)

∂

∂z

[
sin πφi

∂φi

∂z

]
, (4.1)

from which we see that the coefficient multiplying Φi,zz will be positive. Therefore
(3.21) is a quasi-linear advection–diffusion equation. We expect spreading of the
interface relative to some advective motion of mean speed 1 (due to scaling
considerations).

We seek a steady travelling wave solution, shifting to a moving frame, moving
at a unit speed, x = z − t . We assume that the steady profile will be monotone and
symmetric. Thus Φi(x) (or equivalently x(Φi)), will satisfy

x ′(0) = 0, x ′′(0) > 0,

x ′(1) = 0, x ′′(1) < 0,

x ′(Φi) > 0, Φi ∈ (0, 1).

⎫⎬
⎭ (4.2)

The function Φi(x) must satisfy the following equation:

q
(
Φi, b(Φi, Φ

′
i)
)

− Φi = 0, (4.3)

which may also be interpreted as an algebraic equation for x(Φi). Furthermore,
by exactly the same methods as in Carrasco-Teja et al. (2008), we may prove the
following.

Theorem 1. The condition that

q(Φi, α) � Φi for all Φi ∈ [0, 1] (4.4)

is a necessary and sufficient condition for the existence of a steady-state travelling wave
solution to (3.21), that also satisfies the conditions (4.2).

4.1. Newtonian fluids

Newtonian fluids form an important special case. We may note that all mobility
moments mj are constant: mj = 1/(jκk) in fluid k. This means that the leading-order
solution may be calculated semi-implicitly. The flux function q(Φi, b) is given by

q(Φi, b) =
IL

κ2

κ1

IH + IL

+
wC

2

⎡
⎢⎣Φi − IL

κ2

κ1

IH + IL

⎤
⎥⎦+

κ2

κ1

IL

b

3κ1

IH + IL

, (4.5)

where

IL =

∫ φi

0

H (φ)3 dφ, IH =

∫ 1

φi

H (φ)3 dφ.

The condition to have a steady state for two Newtonian fluids is therefore given by

κ1/κ2 >
ΦiIH

(1 − Φi)IL

− αIH

3
(
1 − wC

2

)
(1 − Φi)κ2

, ∀Φi ∈ [01]. (4.6)

Note that for a completely horizontal well α = 0, the axial velocity does not affect
this ratio. Apart from the wC term, this expression is identical with that for the
stationary casing flows in Carrasco-Teja et al. (2008). We may straightforwardly
compute the critical viscosity ratio necessary to satisfy the condition (4.4) at different
wC and α/κ2. It is interesting that only the axial casing velocity affects the leading-
order solution. Casing rotation vC introduces a first-order asymmetry of the interface,
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Figure 6. Effects of small inclination from horizontal on steady-state displacement solutions
for two Newtonian fluids: (a–c) critical viscosity ratio above which we have a steady-state
displacement solution; (d–f ) sample steady-state shapes (solid lines) and with first-order
asymmetric corrections (dotted lines) (parameters are κ1/κ2 = 1.5, e = 0.1); (a and d ) α = −1;
(b and e) α = 0; (c and f ) α = 1. In each figure we plot wC = −0.5 (�), 0 (�), 0.5 (�). Other
model parameters are vC =0.5, b̃ = −50.

i.e. the interface positions are at

φ = −φi + εφ−
i,1, φ = φi + εφ+

i,1, φ+
i,1 = φ−

i,1,

where

φ+
i,1 sin πφi =

3vC

2

[
κ2

∫ φi

0

1

H 2
dφ + κ1

∫ 1

φi

1

H 2
dφ

]
. (4.7)

This explains the apparently identical axial extensions of the interfaces shown earlier
in figure 2, computed from the two-dimensional model.

In figure 6(a–c) we explore the variation in critical viscosity ratio with the annular
eccentricity, for different inclination parameters α (recall that α < 1 means that
the heavy fluid is displacing the lighter fluid downhill). When displacing downhill
(figure 6a), a positive axial casing velocity requires a larger viscosity ratio to achieve
a steady displacement than does a negative axial casing velocity. When displacing
uphill (figure 6c), this trend is reversed. For a perfectly horizontal annulus there is
no effect of the casing motion. We observe a decrease in viscosity ratio for increasing
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Figure 7. Steady-state shapes for two Newtonian fluids with varying casing rotating speeds.
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plotted at vC = 0 (−), 1(· · · ), 2 (+) . (d ) e = 0; (e) e = 0.2; (f ) e = 0.4. For each plot κ1/κ2 = 1.2,
and interfaces are plotted at vC = 0 (−), −1(· · · ), −2 (+). Other model parameters are
wC = 0.3, b̃ = −20.

eccentricity, which parallels the fixed casing results in Carrasco-Teja et al. (2008).
Physically, buoyancy causes the interface to slump towards the bottom of the annulus,
which is a destabilizing effect. A small amount of eccentricity counters the slumping,
by making it harder to flow on the narrow side. At large enough eccentricities the
critical viscosity ratio increases, as it becomes increasingly difficult to flow on the
narrow side, and we therefore see a minimum in the viscosity ratio needed for a
steady-state displacement (e.g. see figure 6a).

Figure 6(d–f ) shows examples of the steady-state shapes, at small eccentricity,
e =0.1, and with κ1/κ2 = 1.5. A positive axial velocity tends to elongate the steady-state
profile as does a downhill displacement. The asymmetric first-order perturbation is
shown with the dotted profile, but only in the central part of the interfacial region since
we have seen that the perturbation procedure breaks down at the ends of this region.

Figure 7 shows the effects of increasing casing rotation rates: both positive and
negative. The basic effect is of course to accentuate the asymmetry in the leading
order. As we increase the viscosity ratio, steady-state shapes become shorter (see
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figure 7a–c). Moderate increases in eccentricity also result in a shorter steady state
(see figure 7d–f ).

4.2. Power law fluids

For power law fluids, we are unable to compute directly the flux function q(Φi, b),
as the closure relation is not specified algebraically. However, we may demonstrate
that the conditions under which a steady-state exists can be expressed in terms of a
consistency ratio. To see this, consider first the closure problem for a power law fluid.
We have (see also Appendix):

∂

∂y
τ = −G, τ = (τφy, τξy) = κγ̇ n−1 d

dy
u.

The boundary conditions for u = (v, w) are u = uC at y = −H and u = 0 at y = H .
On dividing through by κ we observe that the local velocity u depends only on n, H ,
uC and G/κ = (Gφ/κ, Gξ/κ). Therefore, the closure expression (3.13), we may observe
that

Fk,1(Sk,φ, 0) =Fk,1(Sk,φ/κk; nk, H, uC),

and we know that Fk,1 increases monotonically with its first argument.
Suppose now at any Φi we define AL/κ2 and AH/κ1 by

Φi =
1

2

∫ φi

0

FL,1(AL/κ2; n2, H, uC) dφ, 1 − Φi =
1

2

∫ 1

φi

FH,1(AH/κ1; n1, H, uC) dφ.

(4.8)
Following the procedure in Carrasco-Teja et al. (2008), these integrals increase
monotonically with respect to Ak/κk , and hence for fixed Φi , nk , e and uC we
may compute both Ak/κk iteratively. We may therefore write

AL/κ2 = fL(Φi, n2, e, uC); AH/κ1 = fH (1 − Φi, n1, e, uC). (4.9)

We now define b(Φi) = AL −AH = fL(Φi, n2, e, uC)κ2 −fH (1−Φi, n1, e, uC)κ1. Also we
have that b = α−sin πφi(∂φ+

i /∂z) along the steady state, and require that (∂φ+
i /∂z) > 0

for φi ∈ [0, 1]. This gives us the condition

κ1/κ2 >
fL(Φi, n2, e, uC) − α/κ2

fH (1 − Φi, n1, e, uC)
, ∀Φi ∈ [0, 1], (4.10)

in order for there to be a steady travelling wave displacement; compare with (4.26)
in Carrasco-Teja et al. (2008).

Figure 8 explores variations in the critical consistency ratio, κ1/κ2, in a horizontal
annulus with no axial motion of the inner cylinder. We explore the effects of varying
n1 and n2 at small e = 0.2, for different vC . Note here that the casing rotation rate does
enter into the conditions for there to be a steady state, unlike the Newtonian fluid
case. We observe that the critical consistency ratio decreases with n1 and increases
with n2. These effects are expected on physical grounds as they simply correspond to
the displacing fluid becoming more (or less) viscous than the displaced fluid. More
surprising is the relative insensitivity of the critical consistency ratio to the casing
rotation rate.

The shear-thinning effects of casing rotation manifest more in the shape of the
interface, as shown in figure 8(c, d ). For identical power law indices (figure 8a),
as the rotation rate increases the effective viscosity drops and it appears that the
interface elongates. In figure 8(b) the power law index of the displacing fluid is
larger than that of the displaced fluid. As the rotation rate increases the effective
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Figure 8. (a, b) Effects of power law indices on the critical consistency ratio necessary to have
a steady state for two power law fluids: (a) n2 = 0.2, variations with n1; (b) n1 = 0.66, variations
with n2. Other model parameters: wC = 0, α = 0, e = 0.2, and we plot vC = 0 (�), 0.5 (�), 1 (�).
(c, d ) Sample steady-state shapes (solid lines) and asymmetric shifts (dotted lines) for b̃ = −20:
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viscosity of the displaced fluid decreases more rapidly than that of the displacing fluid.
The consequence is that the interface shortens with rotation rate, which is perhaps
counterintuitive.

Figure 9 explores the effects of axial casing velocity for two power law fluids.
In figure 9(a, b) we explore variations in the critical consistency ratio, κ1/κ2, with
power law indices. The results are qualitatively similar to figure 8 in that increasing
n1 decreases the critical consistency ratio, whereas increasing n2 increases the critical
consistency ratio. The effects of reciprocation wC do however appear to be more
pronounced than those of changing vC . It also appears that when n1 >n2 a positive
wC reduces the critical κ1/κ2, but for n1 <n2 this effect is reversed. The crossover
is however approximately at n1 = n2. In figure 9(c, d ) we observe that the interface
length elongates with wC .

4.3. Bingham fluids

For any yield stress fluids, we can follow the procedure of the above section, to at least
determine the functional dependency of the conditions for there to be steady-state
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Figure 9. (a, b) Effects of power law indices on the critical consistency ratio necessary to have
a steady state for two power law fluids: (a) n2 = 0.4, variations with n1; (b) n1 = 0.8, variations
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solutions. The closure expression (3.13) is

Fk,1(Sk,φ, 0) = Fk,1(Sk,φ/κk; Bk, nk, H, uC),

with Bk = τk,Y /κk . We define AL/κ2 and AH/κ1 by

Φi =
1

2

∫ φi

0

FL,1(AL/κ2; B2, n2, H, uC) dφ,

1 − Φi =
1

2

∫ 1

φi

FH,1(AH/κ1; B1, n1, H, uC) dφ.

Again these integrals increase monotonically with respect to Ak/κk , and therefore may
be inverted:

AL/κ2 = fL(Φi, B2, n2, e, uC), AH/κ1 = fH (1 − Φi, B1, n1, e, uC), (4.11)

resulting again in the condition

κ1/κ2 >
fL(Φi, B2, n2, e, uC) − α/κ2

fH (1 − Φi, B1, n1, e, uC)
, ∀Φi ∈ [0, 1], (4.12)
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Figure 10. (a–c) Critical consistency ratio above which we have a steady-state displacement
solution: (a) κ1/κ2 versus e, with τ1,Y = 0.2, τ2,Y =0.1; (b) κ1/κ2 versus τ1,Y with
e = 0.2, τ2,Y = 0.1; (c) κ1/κ2 versus τ2,Y with e =0.2, τ1,Y = 0.5. Other model parameters
are wC = 0, α = 0, and in each figure we plot vC = 0 (�), 0.5 (�), 1 (�). (d–f ) Sample
steady-state shapes (solid lines) and with first-order asymmetric corrections (dotted lines):
(d ) κ1/κ2 = 0.72, τ1,Y = 0.2, τ2,Y = 0.1; (e) κ1/κ2 = 0.75, τ1,Y = 0.2, τ2,Y = 0.1; (f ) κ1/κ2 = 0.9,
τ1,Y = 0.5, τ2,Y = 0.9. In each figure we plot vC = −0.5 (�), 0 (�), 0.5 (�). Other model

parameters are e = 0.2, b̃ = −20.

in order for there to be a steady travelling wave displacement. For Bingham fluids in
particular, we set n1 = n2 = 1.

Figure 10 shows typical variations in critical consistency ratio for two Bingham
fluids, as the eccentricity or either of the yield stresses is increased. The variation
with e is qualitatively as before, with Newtonian fluids, and the qualitative effects of
changing the yield stress of either fluid are predictable in terms of their effect on the
fluid viscosity, i.e. increasing the yield stress also increases the effective viscosity. Hence
increasing τ1,Y reduces the critical κ1/κ2 and increasing τ2,Y increases the critical κ1/κ2.
As before we observe that the critical conditions are not affected much by changes
in vC . Figure 10(d–e) shows example steady-state profiles. In figures 10(a) and 10(b)
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Figure 11. (a–c) Critical consistency ratio above which we have a steady-state displacement
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Other model parameters are b̃ = −100.

casing rotation appears to elongate the interface, perhaps via shear-thinning effects.
In figure 10(c), where the displacing fluid yield stress is smaller than that of the
displaced fluid, casing rotation results in a shorter interface.

Figure 11 shows analogous results to figure 10, but for casing reciprocation. We
observe again that casing reciprocation has an apparently larger effect than casing
rotation on the conditions for there to be a steady states. However, the effects of wC

on length of the steady states appears to be more subdued than those of vC . We again
find the trend of elongation of the steady-state profile with increasing wC .
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5. Discussion and conclusions
In this paper we have formulated a Hele-Shaw model for displacement flows along

narrow eccentric annuli, in the case where the inner cylinder is moving, and where the
fluids are shear thinning with a yield stress. The resulting quasi-linear elliptic partial
differential equation for the stream function has not been solved, primarily due to the
complexity of the closure relations between flow rate and modified pressure gradient,
in the presence of wall motion. This complexity translates into a heavy computational
burden.

Part of the contribution of this paper is in characterizing the closure problem,
deriving qualitative results satisfied by the closure functionals and in proposing an
efficient algorithm with which to solve the closure problem computationally. These
results are detailed in the Appendix, and are important not only for the results in this
paper but also if one wishes to analyse and solve the fully two-dimensional problem
in the future.

The main results of the paper have been in developing a lubrication/thin-film
style displacement model and in its analysis. This model focuses on the limit of
large |b̃|, in which buoyancy-driven slumping is prevalent. We have been able to
show that in this situation, for sufficiently large ratio of displacing fluid consistency
to displaced fluid consistency, a steady travelling wave displacement front can be
found. The length of the steady interface at leading order varies with all the
dimensionless model parameters. An interesting observation is that due to shear-
thinning effects, the steady interface can be either longer or shorter in the presence
of casing rotation than without. This depends on whether or not the displacing
fluid is more or less shear thinning, as well as on the bulk ratio of effective
viscosities.

Viewed in a wider context, the large |b̃| results here complement those in Carrasco-
Teja et al. (2008) for the fixed inner cylinder, suggesting that motion of the inner
cylinder does not drastically change the underlying dynamics of the limit, |b̃| → ∞.
The results in Carrasco-Teja & Frigaard (2009), although only for Newtonian fluids,
showed that for |b̃| � 1 it was possible to extend the steady-state results of Pelipenko &
Frigaard (2004a) to the case of casing motion, i.e. again the underlying dynamics
appear unchanged.

However, we should not conclude that motion of the inner cylinder is unimportant.
First of all, for many of the flows computed in Carrasco-Teja & Frigaard (2009), where
|vC | ∼ |b̃|, localized interfacial instabilities led to mixing over short time scales, and
over longer times to displacements that had diffuse interfacial region but remained
nearly steady. Here too, if we consider sufficiently large vC , we may expect that local
instabilities appear, and the lubrication model becomes invalid. As an example of
this, we present in figures 12 and 13 results of a Newtonian fluid displacement for
successively larger vC . We observe that the lubrication model prediction becomes
progressively poorer for vC > 1 and eventually we observe a significant shortening of
the interface.

Thus, although the semi-analytical solutions in Carrasco-Teja & Frigaard (2009)
and here, are valuable in defining what happens at the limits of large and small
buoyancy number, at intermediate buoyancy number, much of the complexity of
the displacements does depend on transient two-dimensional dynamics, for which
computational solution is needed.

In terms of practical consequences, perhaps the most interesting observation is that
conditions for steady-state displacements appear to be relatively unaffected by casing
rotation. This implies that process design using the simpler fixed casing model of
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Figure 12. The effects of increasing rotation on interfacial stability for two Newtonian fluids;
comparison of predicted steady states with numerical computation: (a) vC = 0.5; (b) vC = 1;
(c) vC =1.5; (d ) vC = 2; (e) vC = 2.5. Other parameters are e = 0.1, κ1 = 1, κ2 = 0.25, α = 0,
wC = 0, b̃ = −50 (ρ1 = 1, ρ2 = 0.9, St∗ = 0.002). See figure 5 for an explanation of the various
curves.

Carrasco-Teja et al. (2008) may be adequate, simply using casing rotation to ensure
that the fluids are yielded/mobilized on the narrow side of the annulus.

From an industrial perspective it may be felt desirable to categorize the effectiveness
of the displacement flows in terms of a ‘displacement efficiency’. This has been
considered but is perhaps an oversimplification that may become misleading. If we
consider parameters for which we have a steady state, with axial length of O(1),
this is clearly the best situation, with 100 % efficiency. However, beyond that things
are less clear. A typical cemented section has dimensionless axial length L of order
102–104. Therefore, although the asymptotic results here give conditions for steady
displacement, the axial lengths of these steady states are of order |b̃| � 1. If |b̃|
becomes of the same order as L, then whether or not the steady state is ‘useful’
becomes an operational or economical question, e.g. (i) is it operationally feasible to
pump more of a particular fluid, to ensure that the steady state transits the entire
annulus; (ii) in the case that this is possible, are the additional costs of the fluids
acceptable. We may just note that the additional volumes needed scale with |b̃| and
material costs are a significant part of the cost of a cementing job. Taking this further,
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Figure 13. Close-up of the interfacial region in figure 12, with parameters: (a) vC =0.5;
(b) vC =1.5; (c) vC = 2.5; (d ) vC = 5; (other parameters as before). See figure 5 for an
explanation of the various curves.

if |b̃| exceeds or is comparable to the axial length of the annulus, we must address
the question of time scale to achieve the steady state, i.e. if the time required is longer
than the residence time in the annulus a steady displacement may not be markedly
different from an unsteady displacement. Secondly, once we begin to consider large
|b̃| flows and stratification, questions of stability, mixing and entrainment become
important in affecting the efficiency of displacement. Although some progress has
been made in this direction (see Moyers-González & Frigaard 2008, 2009), there is
still much to be done.

Finally, although it must be acknowledged that the cementing application
considered is a rather specialized flow, we should consider the wider fluid mechanical
context of the work and its other applications. Firstly, the underlying yield stress
fluid models, in the Hele-Shaw context, have a porous media analogue in so-called
non-Darcy flows with limiting pressure gradient, i.e. these are nonlinear filtration
problems in which yield stress effect is replaced by a critical pressure gradient that
must be exceeded. This critical pressure gradient may be either a property of the
porous media (e.g. argillaceous soils) or of the fluids flowing in the porous media
(e.g. heavy oils). The study of these flows was first carried out by the late V. M. Entov,
in the 1970s and subsequently, and is summarized in the two texts: Goldstein & Entov
(1989) and Barenblatt, Entov & Ryzhik (1990). In this context, the annular geometry
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that we consider corresponds to a spatially periodic anisotropy in the porous media,
and with a spatially periodic conservative (gravitational) force field imposed via f .
For the Couette component in our flows the porous media analogy is unclear to us.

We comment that for porous media studies, it is common to consider geometries in
which the displacement fronts are planar or axisymmetric, and the study is focused
on, for example, local fingering instabilities. Here, the anisotropy due to eccentricity,
the casing motion and the complicated effects of buoyancy and rheology, mean that
the underlying steady displacement flow is itself challenging enough to find. We have
not even touched on questions of instability and fingering.

Secondly, in the wider application context, we mention that similar Poiseuille–
Couette flows occur in annular screw extruders, with narrow gaps and polymeric
liquids. Similarly, rotating annular heat exchangers are used in the food industry,
where one of the cylinders is often fitted with a scraper system. Here the closure laws
are simplified by the assumptions of slow rotation and a dominant axial Poiseuille
flow component (see e.g. Fitt & Please 2001). The closure laws that we have developed
below in the Appendix are general to these flows and the algorithms suggested have
wider utility.

This research has been carried out at the University of British Columbia, supported
financially by Schlumberger and NSERC. This support is gratefully acknowledged.
We thank B. Seymour for helpful discussions.

Appendix. Closure problem
The closure problem involves finding the relationship between applied pressure

gradients and gap-averaged velocity field for a planar two-dimensional shear flow of
an Herschel–Bulkley fluid in a plane channel of width 2H with the wall at y = −H

translating with speed uC . Mathematically, we solve

∂

∂y
τ = −G, (A 1)

where τ = (τφy, τξy), G = (Gφ, Gξ ) and with

τ = η(γ̇ )
d

dy
u ⇐⇒ τ > τY , (A 2)

γ̇ = 0 ⇐⇒ τ � τY . (A 3)

Here we have u = (v, w),

γ̇ =

[(
dv

dy

)2

+

(
dw

dy

)2
]1/2

, τ =
[
τ 2
φy + τ 2

ξy

]1/2
and

η = κγ̇ n−1 +
τY

γ̇
.

The boundary conditions for u are u = uC at y = −H and u = 0 at y = H .
Integrating (A 1) gives us τ = τ 0 − yG, for some unknown stresses, τ 0, at y = 0. We

may note that the velocity gradient is given by

d

dy
u =

1

η(γ̇ )
τ =

1

η(γ̇ )
[τ 0 − yG]. (A 4)
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From integrating by parts, we have

uC = −
∫ H

−H

d

dy
u dy = G

∫ H

−H

y

η(γ̇ )
dy − τ 0

∫ H

−H

1

η(γ̇ )
dy, (A 5)

2H ū =

∫ H

−H

u dy = H uC −
∫ H

−H

y
d

dy
u dy = H uC + G

∫ H

−H

y2

η(γ̇ )
dy − τ 0

∫ H

−H

y

η(γ̇ )
dy,

(A 6)

or alternatively

uC =Hm1G − m0τ 0, (A 7)

2H ū =H uC + H 2m2G − Hm1τ 0, (A 8)

for the mobility moments mj :

mj =

∫ H

−H

( y

H

)j 1

η
dy. (A 9)

Rearranging these expressions to eliminate τ 0 leads to (2.21) and (2.22), which reflects
the split into Couette and Poiseuille components of the flow. Because the effective
viscosity and strain rate appearing in the mobility moments depend on the solution,
(2.21) and (2.22) are in fact implicit nonlinear relationships. We turn now to issues of
solvability and developing the qualitative understanding of these relationships.

A.1. Monotonicity results

For any u and v ∈ W 1,1+n(−H, H ) × W 1,1+n(−H, H ), define the functionals a(u, v),
j (u) and inner product 〈u, v〉, by

a(u, v) =

∫ H

−H

∣∣∣∣du
dy

∣∣∣∣
n−1

du
dy

· dv

dy
dy, (A 10)

j (u) =

∫ H

−H

∣∣∣∣du
dy

∣∣∣∣ dy, (A 11)

〈u, v〉 =

∫ H

−H

u · v dy, (A 12)

and let V be the space:

V =
{
v ∈ W 1,1+n(−H, H ) × W 1,1+n(−H, H ) : v(−H ) = uC, v(H ) = 0

}
.

Using standard methods, e.g. in Glowinski (1983), we may characterize the closure
problem as the following minimization problem:

min
v∈V

κ

n + 1
a(v, v) + τY j (v) − 〈G · v〉. (A 13)

The above functional is strictly convex and the minimization consequently has a
unique solution (see e.g. Ekeland & Témam 1976). The solution u also satisfies the
following variational inequality:

κa(u, v − u) + τY [j (v) − j (u)] � 〈G · (v − u)〉, u ∈ V, ∀v ∈ V. (A 14)

For fixed casing velocity u, consider two modified pressure gradients, G1 and G2,
with velocity solutions u1 and u2, respectively. Evidently the solution space V is
identical for u1 and u2, so that each solution may be used as a test function for the
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other. Summing the above variational inequalities for u1 and u2 gives

〈(G1 − G2) · (u1 − u2)〉 � κ[a(u2, u2 − u1) + a(u1, u1 − u2)] � 0, (A 15)

with the last inequality coming from convexity of a(v, v). Since G1 and G2 are
constant, we have

(G1 − G2) · (ū1 − ū2) � 0. (A 16)

In fact, since a(v, v) is strictly convex, we have strict inequality above except if u1 = u2.
Suppose that u1 = u2 �= 0. We note that the mobility moments mj are uniquely

defined by γ̇ and hence by u. Thus, in the identity (2.21) we have the same mobility
moments for u1 and u2. This implies that either G1 = G2 or the coefficient

m2 − m2
1/m0 = 0.

However, from the Cauchy–Schwarz inequality we have that m2
1 � m0m2 with equality

only if the integrands of m0 and m2 are linearly dependent. However, we observe this
can only happen if the integrands are identically zero, i.e. if the effective viscosity is
infinite and the fluid unyielded everywhere. But if the casing velocity uC �= 0, then the
fluid cannot be unyielded everywhere. Therefore, we see that the following is true.

(i) If uC �=0 then u1 = u2 if and only if G1 = G2. The inequality (A 16) is strict
unless u1 = u2, or equivalently, if and only if G1 = G2.

(ii) If uC = 0 then u1 = u2 �= 0 if and only if G1 = G2. The inequality (A 16) is
strict unless u1 = u2 �= 0, or equivalently, if and only if G1 = G2. Alternatively, if
u1 = u2 and G1 �= G2, then u1 = u2 = 0.
We note that the latter case corresponds to the fixed casing situation, when indeed
different G may lead to u = 0, provided that |G| � τY /H .

A.2. Computation of the closures

The inequality (A 16) and above comments on monotonicity establish the feasibility
of computing the closure. In the case that uC �= 0 there is a one-to-one mapping
between u and G, and (A 16) implies that by increasing say Gφ we increase uφ and
vice versa. Therefore, if we have a ‘forward solver’ (computing u from G), we may
use this to iterate monotonically towards finding the correct G that satisfies some
constraint ū = ū∗.

For the purpose of this paper, the type of closure we wish to compute is one
in which both ūφ and Gξ are fixed. Although this could be computed via an outer
iteration, as outlined above, one still needs to compute the forward solver. Instead we
outline here a method in which the constraints are satisfied within the framework of
the forward solver.

Suppose then that ūφ = ū∗
φ and Gξ =G∗

ξ . We use Gφ as a Lagrange multiplier for
the constraint, ūφ = ū∗

φ , by minimizing

min
v,Gφ

κ

n + 1
a(v, v) + τY j (v) − 〈Gφ(vφ − ū∗

φ)〉 − 〈G∗
ξ vξ 〉. (A 17)

Again we know that there is a unique solution to this minimization. To cope
with the non-differentiability of the above functional, we relax (dv/dy) �→
q ∈ U = {L1+n(−H, H ) × L1+n(−H, H )} and replace the above minimization with the
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following saddle point problem in the classical way (e.g. Glowinski 1983):

max
s

min
v,Gφ,q

L(v, Gφ, q, s), (A 18)

L(v, Gφ, q, s) =
κ

n + 1
〈|q|n+1〉 + τY 〈|q|〉 − 〈Gφ(vφ − ū∗

φ)〉 − 〈G∗
ξ vξ 〉

+
r

2

〈(
dv

dy
− q

)
·
(

dv

dy
− q

)〉
+

〈
s ·
(

dv

dy
− q

)〉
. (A 19)

The saddle point problem (A 19) can be solved iteratively using an Uzawa-type
algorithm, sequentially determining the optimality for v, Gφ , q and s. This procedure
converges under fairly non-restrictive conditions. However, for the problem at hand
it does not take full advantage of the known solution structure. Firstly, it is known
that in the converged solution: s → τ and since τ satisfies the reduced momentum
equations, both components are linear in y. Thus, in place of s we impose

s = τ̃ 0 − y G̃,

where G̃ξ = G∗
ξ , and will iterate to find τ̃ 0 and G̃φ at each step. Evidently, on

convergence τ̃ 0 → τ 0 and G̃φ → Gφ . Secondly, the problem for v is linear and we
might hope to implement the constraint ūφ = ū∗

φ directly within the solver, thus
determining Gφ directly at each iterate. Lastly, we note that for the closure problem,
we have no direct interest in u, but only in the averaged value ū. Therefore, it appears
that there is some wasted effort in computing u at each iterate. We now use these
observations, in deriving an improved Uzawa-type algorithm for the saddle point
problem.

First let us suppose that an initial guess for τ̃ 0, G̃φ and q is available at step k, say

τ̃ 0 = τ̃ k
0, G̃φ = G̃k

φ and q = pk . The optimality condition for v, which defines uk+1, is
simply

r
d2

dy2
uk+1 = r

d

dy
pk −

(
Gk+1

φ , G∗
ξ

)
− d

dy
sk = r

d

dy
pk −

(
Gk+1

φ − G̃k
φ, 0
)
.

Integrating twice and using the boundary conditions at y = ±H , we find

d

dy
uk+1 = − 1

2H
uC + pk − p̄k − y

r

(
Gk+1

φ − G̃k
φ, 0
)
,

uk+1 =
H − y

2H
uC +

∫ y

−H

pk(ỹ) − p̄k dỹ − y2 − H 2

2r

(
Gk+1

φ − G̃k
φ, 0
)
,

ūk+1 =
1

2
uC − 1

2H

∫ H

−H

ỹ[ pk(ỹ) − p̄k] dỹ +
H 2

3r

(
Gk+1

φ − G̃k
φ, 0
)
,

where we have used the notation, e.g.

p̄k =
1

2H

∫ H

−H

pk(ỹ) dỹ.

Therefore, at the (k + 1)st iterate we set

Gk+1
φ = G̃k

φ +
3r

H 2

[
ū∗

φ − 1

2
vC +

1

2H

∫ H

−H

ỹ
[
pk

φ(ỹ) − p̄k
φ

]
dỹ

]
, (A 20)

ūk+1
ξ =

1

2
wC − 1

2H

∫ H

−H

ỹ
[
pk

ξ (ỹ) − p̄k
ξ

]
dỹ, (A 21)

so that the imposed constraint on ūφ is automatically satisfied by this choice of Gk+1
φ .
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The optimality condition for q, which defines pk+1, consists of minimizing over q
the following functional, K(q):

K(q) =
κ

n + 1
|q|n+1 +

r

2
|q|2 + τY |q| − ck · q,

ck = r
d

dy
uk+1 + sk = r[ pk − p̄k] − r

2H
uC − y

(
Gk+1

φ , G∗
ξ

)
+ τ̃ k

0.

Note that ck = ck(y), so that the minimization of K(q) is carried out for y ∈ [−H, H ].
We have the following solution:

pk+1 = 0, ⇔ |ck| � τY , (A 22)

pk+1 =
| pk+1|

|ck| ck, ⇔ |ck| > τY , (A 23)

κ | pk+1|n + r | pk+1| = |ck| − τY . (A 24)

This last equation requires computational solution if n �= 1, but for the case of a
Bingham fluid we see that pk+1(y) is specified as a simple algebraic function at each
iterate.

Finally, we update τ̃ k
0 and G̃k

φ by setting

G̃k+1
φ = Gk+1

φ , (A 25)

τ̃ k+1
0 = τ̃ k

0 − ρ

[
p̄k+1 +

1

2H
uC

]
. (A 26)

The last of these comes from the usual update for s, i.e.

sk+1 = sk + ρ

[
d

dy
uk+1 − pk+1

]
.

On substituting for the linear form of s we observe that τ̃ 0 is the mean value of s.
Substituting from the expression for (d/dy)uk+1 and averaging over [−H, H ] leads to
the above projection for τ̃ k

0.
The parameters r and ρ above are the usual numerical parameters of the Uzawa

algorithm. In order to implement this algorithm we use the Newtonian solution to
give the initial iterate, k = 1. After some algebra this gives

τ̃ 1
0 = − κ

2H
uC, G̃1

φ =
3κ

H 2

[
ū∗

φ − vC

2

]
, p1 = − 1

2H
uC − y

κ

(
G̃1

φ, G
∗
ξ

)
.

A.2.1. Comments

There are alternatives to the above closure algorithm. However, it is worth noting
that for the non-Newtonian fluids, all require some form of numerical integration
across the interval [−H, H ] as well as some iteration to find the solution. In this sense
we can expect that computational times will all be comparable. The advantage of the
above approach is that we have not computed the velocity field pointwise in [−H, H ]
and that the constraints on the mean velocity and modified pressure gradient could
be easily incorporated into the algorithm.

REFERENCES

Barenblatt, G. I., Entov, V. M. & Ryzhik, V. M. 1990 Theory of Fluid Flows Through Natural
Rocks. Theory and Applications of Transport in Porous Media, vol. 3. Kluwer.



172 M. Carrasco-Teja and I. A. Frigaard

Bittleston, S. H., Ferguson, J. & Frigaard, I. A. 2002 Mud removal and cement placement during
primary cementing of an oil well; laminar non-Newtonian displacements in an eccentric Hele-
Shaw cell. J. Engng Maths 43, 229–253.

Carrasco-Teja, M. & Frigaard, I. A. 2009 Displacement flows in horizontal, narrow, eccentric
annuli with a moving inner cylinder. Phys. Fluids 21, 073102.

Carrasco-Teja, M., Frigaard, I. A., Seymour, B. R. & Storey, S. 2008 Viscoplastic fluid
displacements in horizontal narrow eccentric annuli: stratification and travelling waves
solutions. J. Fluid Mech. 605, 293–327.

Dutra, E., Naccache, M., Souza-Mendes, P., Souto, C., Martins, A. & de Miranda

C. 2004 Analysis of interface between Newtonian and non-Newtonian fluids inside
annular eccentric tubes. In Proceedings of ASME-IMECE, Anaheim, CA. Paper number
59335.

Ekeland, I. & Témam, R. 1976 Convex Analysis and Variational Problems. North-Holland.

Fitt, A. D. & Please, C. P. 2001 Asymptotic analysis of the flow of shear-thinning foodstuffs in
annular scraped heat exchangers J. Engng Maths 39, 345–366.

Goldstein, R. V. & Entov, V. M. 1989 Qualitative Methods in Continuum Mechanics. Academic
Press.

Glowinski R. 1983 Numerical Methods for Nonlinear Variational Problems. Springer.

Jakobsen, J., Sterri, N., Saasen, A., Aas, B., Kjosnes, I. & Vigen, A. 1991 Displacements in
eccentric annuli during primary cementing in deviated wells. Soc. Petrol. Engrs. Paper number
SPE 21686.

Martin, M., Latil, M. & Vetter, P. 1978 Mud displacement by slurry during primary cementing
jobs – predicting optimum conditions. Soc. Petrol. Engrs. Paper number SPE 7590.

McLean, R. H., Manry, C. W. & Whitaker, W. W. 1966 Displacement mechanics in primary
cementing. Soc. Petrol. Engrs. Paper number SPE 1488.
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